PRODUCTION OF VOLATILE ANTIBIOTICS FROM AN ENDOPHYTIC FUNGUS (PHOMOPSIS SP.) OF ODONTOGLOSSUM SP. (ORCHIDACEAE) AND ITS POTENTIAL PRACTICAL APPLICATIONS

Sanjay K. Singh¹ & Gary A. Strobel²

singhsksingh@rediffmail.com

¹National Fungal Culture Collection of India, ARI, Pune, INDIA ²Montana State University, Bozeman MT, USA

Ministry of Science & Technology, Government of India

 To contribute to the knowledge of fungal biodiversity through field exploration, collection and taxonomic studies

- To provide long-term preservation of fungi as genetic resource available for research, reference and exploitation
- To provide services to researcher, industry and society related to fungal biology
- To disseminate the knowledge through training programmes, organising conferences, publications in monographs, technical bulletin & scientific journals

ENDOPHYTES-SOME FACTS

- *Endophytes represent an enormous diversity and their specialized habituations make them a stimulating field of study.
- *Other than mere diversity research attention is now paid to the bioactive metabolites of endophyte.
- *The fact that endophytes can make some phytochemicals originally characteristic of the host has changed the scope of endophytic biology and the importance of the output of endophytes.
- *Different classes of natural products have been discovered from endophytes. (antibacterial, antifungal, antitumor, antiviral & industrial enzymes etc.; even unusual molecules that act as antidiabetic, immunomodulatory, herbicidal, and plant growth promoting/plant protective agents).
- * Recent report of production of volatile organic compounds (VOCs) with the various use in agriculture by endophyte has open a new path and proved that endophytes produce an abundant and reliable source of novel natural products and are still poorly understood.

METHODS

- **⇒** Isolation of endophytes [selective]
 - **⇒** Biological screening [plate assay]
 - **⇒** Qualitative analyses of VOCs [GC/MS]
 - ⇒ Bioactivity of artificial mixture of VOCs
 - **⇒** Quantitative analysis of VOCS [PTR-MS]
 - → Characterization & identification[Polyphasic]
 - **→** Conservation & application

- oMore than 100 isolates of fungi and actinomycetes isolated into pure cultures from leaf and stem tissues of 12 plants collected from different locations of cloudy forests of Ecuador.
- oBased on *in vitro* cultural and morphological criteria isolates were categorized in to 26 different strains of fungi and 4 strains of actinomycetes.
- oIn screening plates containing water agar medium (WA), 5 colonies appeared growing from sterilized leaf tissues of *Odontoglossum* sp. (Orchidaceae), 4-days after incubation.
- oThese colonies were found identical in culture morphology, growth pattern and producing an interesting aeromatic smell were assigned number 'EC-4' and selected for the bioactivity tests.

ODONTOGLOSSUM FROM ECUADOR

some endophytes

some endophytes

Test organism	Inhibition (%) after 144 h	IC ₅₀ of artificial atmosphere after 48	Concentration in µl/ml of air space
	exposure*	h (μl ml ⁻¹)	required to produce 50%
			reduction
Aspergillus fumigatus	57.00 ± 0.5773	20.00 ± 1.15	0.400
Botrytis cinerea	37.83 ± 0.5773	11.50 ± 0.11	0.230
Ceratocystis ulmi	11.13 ± 1.5275	13.80 ± 0.00	0.276
Cercospora beticola	19.59±0.5773	10.40 ± 0.00	0.208
Colletotrichum lagenarium	No inhibition	14.40 ± 0.00	0.288
Fusarium solani	43.22 ± 0.0000	22.60 ± 1.61	0.452
Geotrichum candidum	45.36 ± 0.5773	25.65 ± 0.99	0.513
Phytophthora palmivora	5.66 ± 0.5773	11.76 ± 1.77	0.235
Pythium ultimum	59.11 ±0.957	08.00 ± 0.80	0.160
Pytophthora cinnamomi	42.04 ±0.5773	12.80 ± 0.34	0.256
Rhizoctonia solani	53.00 ±1.000	20.72 ± 0.95	0.414
Sclerotinia sclerotiorum	70.78 ±1.1547	14.49 ± 0.35	0.289
Trichoderma viride	No inhibition	14.50 ± 0.69	0.290
Verticillium dahliae	19.42 ± 0.000	14.40 ± 0.00	0.288

Effect of 7-day old culture of *Phomopsis* sp. (EC-4) VOCs on selected fungal pathogens. Inhibition values calculated as a %age of growth inhibition relative to a control test organism. Concentration of artificial mixture of VOCs in μ l/ml of air space required to produce 50% reduction were calculated. Tests were conducted in triplicate and results varied as indicated by standard deviations.

RT (min:s)	Total area	Possible compounds	Stds*	MW	Quality
2.52	1.11	2-Propanone		58	64
6.39	1.50	Benzene, methyl		92	91
7.10	1.21	Unknown**		132	
7.28	0.90	Unknown**		164	
7.53	1.21	Unknown**		194	
7.84	2.80	1-Propanol, 2-methyl-	*	74	91
8.50	4.72	Benzene, ethyl-		106	95
10.65	5.22	Sabinene	*	136	91
10.88	105.17	1-Butanol, 3-methyl	*	88	83
20.58	1.39	Unknown**		162	
22.36	2.24	(+ -) – gymnomitrene		204	64
23.35	7.68	(-)betaAcoradiene		204	64
24.84	4.46	Unknown**		133	
28.34	8.76	Benzeneethanol	*	122	91
41.61	1.11	Unknown**		294	59

^{*} Retention time and MS spectrum closely matched or were identical to an standard compound. Those compounds without a designated foot note have a mass spectrum that most closely matched the appropriate compound in the NIST database.** Unknown compounds represent those with a quality value less than 50.

13

PROTON TRANSFER-MASS SPECTROMETER (PTR-MS)

PTR-MS instrument ionizes organic molecules in the gas phase through reaction with H_3O^+ , forming mostly protonated molecules (MH⁺)

which can be detected by a standard quadrupole mass spectrometer.

This process can be run on real air samples with or without dilution, since the primary constituents of air (nitrogen, oxygen, argon and carbon dioxide) have a proton affinity less than water and thus are not ionized.

Most organic molecules (excepting alkanes) have a proton affinity greater than water and are therefore ionized and detected.

Enormous advantage of PTR-MS is that it can be run in real time and continuously produce data on the concentrations of specific ions of interest.

*Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): medical applications, food control and environmental research. Int J Mass Spectrometry Ion Process 173:191–241

14

- -Sabinene m/z 81 & m/z 137 3-methylbutanol - m/z 71
- -The total volatile production measured was 18.4 ppm

- 1. A PTR MASS SPECTRUM OF A 7 DAY OLD CULTURE OF. *PHOMOPSIS* SP. (EC-4).
- 2. A PTR MASS SPECTRUM OF A STANDARD SABINENE OBTAINED FROM SIGMA-ALDRICH.

Acc.No. MSU (EC-4) 2377

A-E: *Phomopsis* sp. (EC-4)

- A. Colony with fruiting on PDA
- B. Oozing of slimy mass of conidia from a conidioma developed on PDA
- C. Scanning electron micrographs of alpha conidia
- D. Scanning electron micrographs of conidiophores with condiogenous loci (scars)
- E. Line drawing showing conidia attached from conidiophores arising out from fragile vegetative mycelia growing in vitro

Neighbour joining tree based on ITS1-5.8S-ITS2 sequences showing the relationships among species of Phomopsis and Diaporthe.

HM626462-http://www.ncbi.nlm.nih.gov

SELECTED REFERENCES

- Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002). Microbiol Reading 148:3737–3741
- Ezra D, Hess W, Strobel GA (2004). Microbiology 150:4023-4031
- Ezra D, Jasper J, Rogers T, Knighton B, Grimsrud E, Strobel GA (2004). Plant Science 166:1471–1477
- · Guo B, Wang Y, Sun X, Tang K (2008). Appl Biochem Microbiol 44:136–142
- · Lacey LA, Neven LG (2006). J Invertebrate Pathol 91:195-198
- Lindinger W, Hansel A, Jordan A (1998). Int J Mass Spectrometry Ion Process 173:191–241
- · Renninger NS, Ryder JA, Fischer KJ (2008). WO2008130492,2008
- · Rude M, Schirmer A (2009). Curr Opin Microbiol 12:274-281.
- · Stinson M, Ezra D, Hess WM, Sears J, Strobel GA (2003). Plant Science 165:913-922
- · Stinson M, Zidack NK, Strobel GA, Jacobsen BJ (2003). Plant Dis 87:1349–1354
- Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) Microbiology 154:3319–3328.
- · Tao G, Liu ZY, Hyde KD, Liu XZ, Yu ZN (2008). Fungal Diversity 33:101-122
- Uecker FA (1988). Mycologia Mem 13:1-213

ACHIEVEMENTS

- Isolation and identification of an unusual species of *Phomopsis* (EC-4),
 produces a distinct set of volatile compounds
- VOCs showed antifungal activity against wide range of plant pathogens
- Artificial mixture of volatiles mimicked the antibiotic effects of *Phomopsis* sp. (EC-4)
- Tests on 2-34 μ l of the artificial gas mixture per 50 ml of air space in PDA plate revealed IC₅₀ value between 8–25.65 μ l/mL
 - Olfactory tests revealed media enriched with starch, glucose, and cellobiose facilitates higher concentrations of volatile compounds
- PTR-MS revealed concentration of total VOCs emissions as 18.4 ppm.
- This is the first report of fungal sabinene
- Volatiles produced by known *Muscodor albus* did not affect the *Phomopsis* sp.

OUTLOOK & GOALS

- Selection of hosts from unusual habitats or niches
- Selective Isolation of endophytes from selected hosts
- Selection of bioactive endophytes
- Screening of endophyte producing VOCs
- Selection of VOCs as mycofumigant
- Screening of endophytes for biofuel production
- VOCs as alternative of agrochemical to be phased out
- Use of advance tools for future research on endophytes

ACKNOWLEDGEMENTS

World Federation for Culture Collections for providing opportunity and partial financial support

Ministry of Science & Technology (DST & DBT), Govt. of India for providing travel and study grants

Montana State University, USA & MACS' Agharkar Research Institute, Pune, India for providing research facilities.

