

Monosodium Glutamate as Lyoprotector: Effectiveness during Freeze-drying and Storage of Lactobacillus delbrueckii subsp. bulgaricus

Gladys Irma Martos Graciela Font de Valdez

Centro de Referencia para Lactobacilos


CERELA

Tucumán - Argentina

L. bulgaricus

Lactobacillus delbrueckii ssp. bulgaricus

(L. bulgaricus)

Mozzarella

Provolone

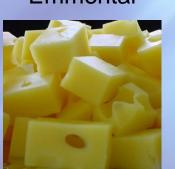
Kefir

Kushik

Tarhana

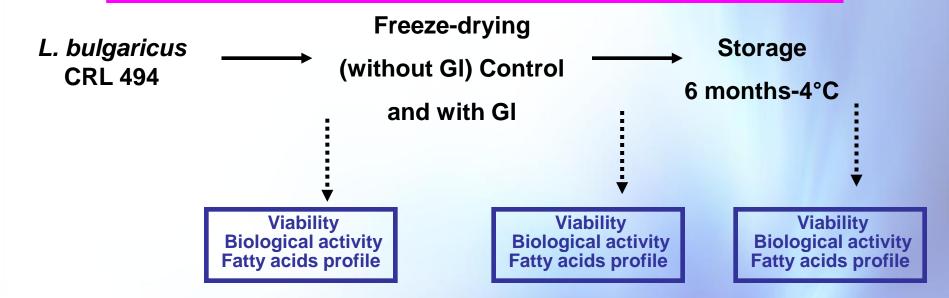
Tacharas

Chondros


Kishk

yogurt

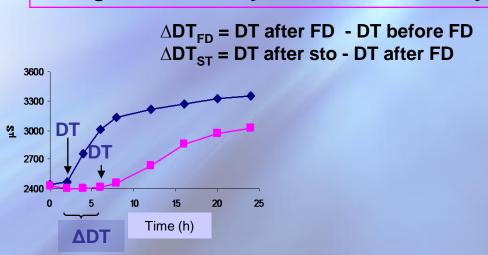
Emmental

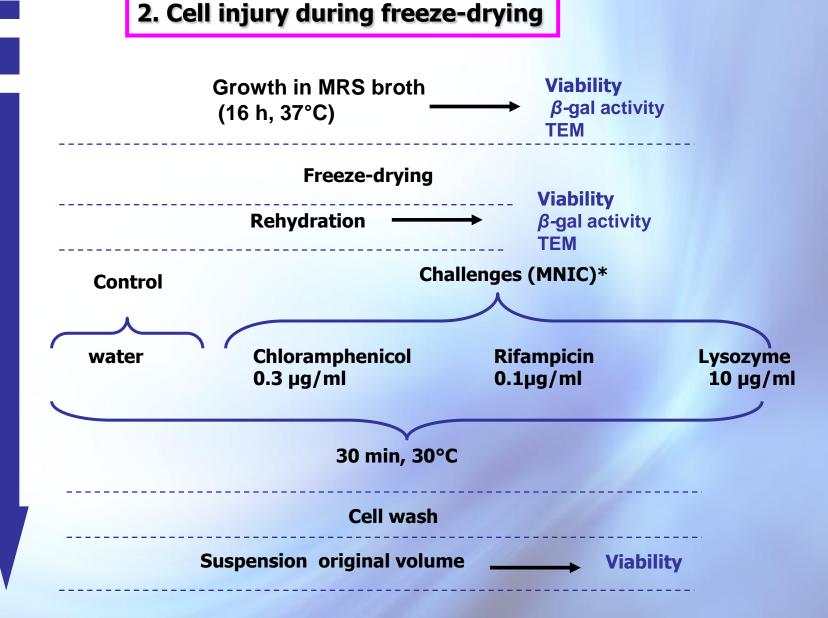

Gruyere

Objectives

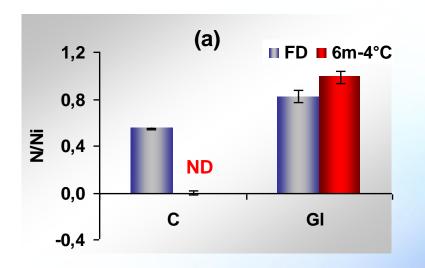
To evaluate the damage occured during lyophilization and the role of monosodium glutamate as lyoprotector in preserving cell viability and metabolic activity of *L. bulgaricus* CRL 494

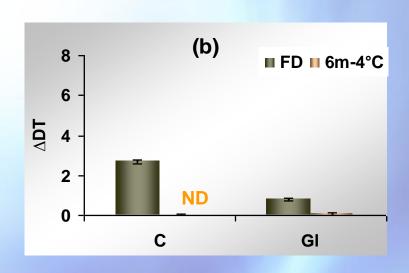
1. FREEZE-DRYING (FD): Effect of monosodium glutamate (GI)


Cell viability: plate dilution

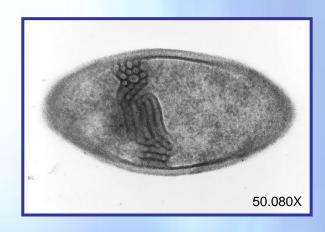

N/Ni index

N: log CFU/ ml after a given treatment (freeze-drying or storage)

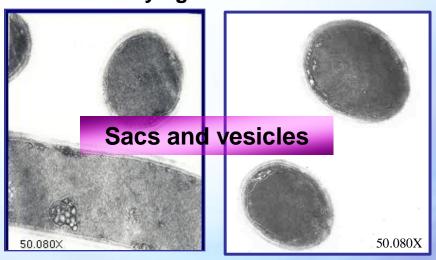

Ni: log CFU/ ml before the referred treatment


Biological cell activity: direct conductimetry

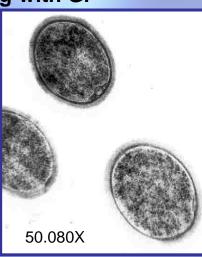
1. Survival of *L. bulgaricus* CRL 494 subjected to freeze-drying and storage (6 months-4°C). Effect of sodium glutamate 5%


- **↓** Lyophilization causes decrease in (a) viability and (b) metabolic activity of *L. bulgaricus* CRL 494.
- **♣ Monosodium** glutamate 5% was effective in preserving cell injury from freeze-drying.

2. Cell injury during freeze-drying


Changes in cell envelope (TEM)

Before freeze-drying



After freeze-drying without GI

After freeze-drying with GI

Cell damage indicators

After freeze-drying

Absorbance	ΔOD
λ=260 nm	0,726
λ=280 nm	0,291
β-galactosidase activity	(%)
Cell suspension (non permeabilized cells)	38,2
Supernatant (non permeabilized cells)	10,7
Sensitivity to selective compounds	(%)
Chloramphenicol	3,1
Rifampicin	0,5
Lysozyme	25

Plasma membrane
Cell wall

Changes in fatty acid composition

Peroxidation

FA	Control	AFD	Storage
			6m-4°C
C13:0	ND	ND	7.9 ± 1.1
C14:0	8.5 ± 1.3	10.2 ± 0.9	0.4 ± 0.1
C16:1	19.4 ± 0.5	17.0 ± 0.6	15.1 ± 0.5
C16:0	44.6 ± 1.1	41.4 ± 0.5	40.1 ± 0.9
C17:0	ND	ND	2.9 ± 0.5
C18:1	11.9 ± 0.6	11.7 ± 1.2	9.7 ± 0.3
C18:0	1.7 ± 0.1	3.8 ± 0.3	3.6 ± 0.1
С19:0 сус	13.7 ± 3.9	13.5 ± 1.5	15.9 ± 0.9
С18:0,10 ОН	ND	2.2 ± 0.2	$\boxed{4.3 \pm 0.1}$
Unsaturated	45.0 ¹	42.22	40.72
Saturated	54.81	55.4 ¹	54.91
U/S	0.821	0.76^{2}	0.74^{3}

2. Cell injury during freeze-drying

L. bulgaricus CRL 494 displayed sensitivity to lysozyme and increased permeability of the cell envelopes possibly related to the membranous forms and retraction of the cytoplasm and changes in the lipid profile

CONCLUSIONS

- **♣** The envelope of *L. bulgaricus* CRL 494 was the major cell structure damaged by freeze-drying.
- **♣** Sodium glutamate reduced the deleterious effects of freezedrying enhancing cell viability and recovery of metabolic activity.

THANKS!!

